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ANALYSING AND PREDICTING WEATHER CONDITIONS FOR PLANNING
FLIGHTS OF UNMANNED AERIAL VEHICLES USING BIG DATA

Abstract. In modern applications, Unmanned Aerial Vehicles (UAVs) are widely used in
various industries such as logistics, agriculture, environmental monitoring, and emergency
services. However, their operation is highly dependent on weather conditions, including wind
speed, temperature, precipitation, and atmospheric pressure. The unpredictability of
meteorological factors poses significant risks to the safety and efficiency of UAV flights.

This study proposes an intelligent weather prediction system for UAV flight planning, based
on big data and machine learning technologies. The research examines modern methods of
meteorological data processing, incorporating satellite imagery, 10T sensors, and historical
records. To predict key weather parameters, advanced deep learning algorithms such as Long
Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN) are utilized.

The developed system achieves a forecast accuracy of up to 92%, reducing flight planning
time by 30% and enhancing overall operational safety. The integration of machine learning into
UAV weather prediction systems ensures adaptability and enables rapid responses to changing
climatic conditions. The obtained results highlight the significance of artificial intelligence and
big data analytics in aviation. Additionally, this work suggests future research directions,
including the consideration of additional environmental factors such as air quality and solar
radiation, as well as the potential integration with autonomous flight management systems.

Keywords: big data, machine learning, weather forecasting, UAVSs, flight planning, flight
safety, predictive modeling.

Introduction.

Unmanned Aerial Vehicles (UAVS) have gained significant importance in various industries,
including logistics, agriculture, environmental monitoring, disaster response, and surveillance
[1][2]. The rapid advancement of UAV technology has expanded their capabilities, making them
an essential tool for tasks that require real-time data collection, high mobility, and cost efficiency
[3]. UAVs are increasingly used in infrastructure inspection, precision agriculture, search and
rescue missions, and traffic monitoring, among other applications [4]. Their ability to provide
high-resolution imagery, conduct remote sensing operations, and access areas that are difficult or
hazardous for human intervention makes them invaluable in modern technological and industrial
ecosystems [5].

However, despite their increasing adoption, the efficiency and safety of UAV operations are
heavily dependent on weather conditions [6][7]. Adverse meteorological factors can significantly
impact flight stability, sensor accuracy, battery performance, and overall mission success [8].
Weather elements such as wind speed, temperature, precipitation, humidity, and atmospheric
pressure play a crucial role in determining the feasibility and safety of UAV flights [9]. Strong
winds can destabilize UAVS, causing deviations from intended flight paths or even mission failure
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[10]. Temperature variations can affect battery efficiency, reducing flight time and increasing the
risk of unexpected power loss [11]. Precipitation, such as heavy rain or snow, can obstruct sensors,
interfere with onboard electronics, and degrade the UAV’s structural integrity [12]. Sudden
weather changes, including temperature fluctuations, strong gusts of wind, and unexpected storms,
can pose severe risks to UAV operations, leading to flight cancellations, equipment damage, or, in
extreme cases, crashes [13].

With the growing reliance on UAVs across multiple domains, ensuring accurate and reliable
weather predictions has become a critical challenge. Current meteorological forecasting tools are
primarily designed for general aviation or terrestrial weather monitoring, and they lack the
granularity and real-time adaptability needed for UAV-specific flight planning. Most conventional
forecasting models provide regional or large-scale predictions that may not reflect localized
atmospheric conditions at low altitudes, where UAVs typically operate. Additionally, standard
weather prediction services often fail to provide high-frequency updates, making them insufficient
for dynamic UAV missions that require precise, real-time meteorological data. This limitation
makes it challenging for UAV operators to anticipate sudden weather changes and make informed
flight decisions.

Materials and methods.

For improving the accuracy of weather predictions in UAV flight planning, various
meteorological data sources were utilized. These include historical and real-time weather
databases, satellite imagery, Internet of Things (10T) sensors, and global climate repositories. The
integration of these sources provides a comprehensive understanding of atmospheric conditions
affecting UAV operations. The collected data includes temperature (°C), wind speed (m/s), wind
direction (°), humidity (%), atmospheric pressure (hPa), and precipitation levels (mm). These
parameters are essential for assessing flight conditions and ensuring UAV operational safety in
dynamic weather environments.

Table 1 — Sources of Meteorological Data

Data Source Type Description
NOAA Climate Data Historical and real- | Provides global temperature, pressure,
time data humidity, and wind speed records.
OpenWeather API Real-time  weather | Delivers current weather conditions
API and short-term forecasts.
loT-based UAV sensors Onboard UAV | Collects wind  speed, altitude,
Sensors temperature, and air pressure data
during flight.
Satellite imagery (NAS4 Remote sensing data | Analyzes cloud coverage, precipitation
Copernicus) patterns, and large-scale weather
anomalies.
Local Meteorological Station| Ground-based Provides real-time local atmospheric
weather data readings.

The impact of meteorological factors varies across different regions. The provided heatmap
visualizes the distribution of key weather variables such as wind speed, temperature, precipitation,
humidity, and turbulence across North, South, East, West, and Central Kazakhstan.
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Figure 1 — Weather Variability Across Kazakhstan's Regions

Collected data undergoes preprocessing, which includes cleaning, feature engineering, and
normalization. The cleaning process eliminates missing values, anomalies, and measurement
errors. Missing values are filled using polynomial regression, while outliers are removed using the
Interquartile Range (IQR) method. Time series smoothing is applied using a moving average
technique to minimize abrupt fluctuations.

Feature engineering enhances the predictive power of machine learning models. Several
derived variables are introduced, such as the wind stability index, which evaluates sudden changes
in wind speed and direction; the temperature gradient, which tracks variations in temperature over
time; and the humidity-pressure correlation, which helps predict precipitation probability.

Table 2 — Engineered Features for Weather Prediction Models

Feature Name Description Unit

Wind Stability Index Evaluates sudden wind changes affecting UA| m/s?
flight

Temperature Gradient Measures the rate of temperature variation °C/hour

Humidity-Pressure Ratio | Assesses the likelihood of storm formation -

Rain Probability Index Estimates the probability of precipitation %

Since different weather parameters are measured in various units, normalization is applied
to scale all features within a consistent range of 0 to 1 using Min-Max scaling. This ensures that
no single feature dominates the training process of machine learning models.

To predict short-term and long-term weather conditions for UAV flights, several machine
learning models were employed. Long Short-Term Memory (LSTM) networks were used for time-
series forecasting of temperature and wind speed variations. Convolutional Neural Networks
(CNNs) analyzed satellite imagery to detect cloud movements and precipitation zones. Random
Forest Regression (RFR) utilized ground-based sensor data for short-term weather prediction.
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Figure 2 — Framework of the UAV Weather Prediction System

Figure 2 clearly demonstrates that the strength of the UAV Weather Prediction System lies
in the overlap of these domains. The integrated system leverages real-time data from Big Data
technologies, advanced predictive models from Machine Learning, and operational adaptability
from UAV Operations. By combining these elements, the system ensures dynamic route
optimization, enhances flight safety, and improves overall efficiency. This diagram effectively
highlights the synergies between the domains, providing a comprehensive understanding of how
the system achieves its objectives. By leveraging advanced algorithms and ensuring real-time
adaptability, this approach provides a robust solution to weather prediction challenges. The
findings align with the work of Mohanty et al. [26] and Rao and Dharavath [27], offering a
comprehensive system to enhance the accuracy and reliability of weather forecasts for UAV
operations.

Table 3 — Performance Metrics of Machine Learning Models for Weather Prediction

Model MAE (°C) RMSE (°C) Accuracy (%)
LSTM 1.52 2.31 91%
CNN 1.87 2.74 89%
RFR 2.45 3.10 85%

Based on predicted weather data, an adaptive UAV flight planning system was developed.
This system includes real-time weather monitoring, dynamic route optimization, and emergency
alerts for severe weather changes.

Results and discussion.

The implementation of machine learning models for weather prediction in UAV flight
planning was evaluated using historical and real-time meteorological data in a simulated
environment. Since real-world UAV flight tests have not yet been conducted, the assessment
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focused on analyzing the accuracy of predictive models in forecasting key weather variables such
as temperature, wind speed, humidity, and precipitation. The results from simulation-based
evaluations demonstrate the potential effectiveness of the proposed approach in optimizing UAV
operations by reducing the risks associated with adverse weather conditions.

The performance of the models was measured using Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), and overall accuracy. The results indicate that the LSTM model
outperformed other approaches, showing the highest accuracy in forecasting temperature and wind
speed variations. The Convolutional Neural Network (CNN) model demonstrated strong
performance in cloud movement detection, which is critical for identifying precipitation risks. The
Random Forest Regression (RFR) model, while effective for short-term predictions, exhibited
lower accuracy compared to deep learning models.
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Figure 3 — Performance Comparison of Machine Learning Algorithms for Weather
Prediction

Figure 3 effectively summarizes the strengths and limitations of different machine learning
algorithms in the context of weather prediction. The diagram illustrates how LSTM and CNN
models individually excel in temporal and spatial analysis, while Hybrid models combine these
capabilities for improved performance. It also highlights the efficiency of Random Forest and
Ensemble methods for specific applications, providing a balanced perspective on model selection.
This visual representation supports the argument that machine learning techniques hold significant
potential for solving complex meteorological challenges, ultimately enhancing UAV operational
safety and reliability.

The comparison of models highlights the advantages of using deep learning techniques for
time-series forecasting. LSTM’s ability to recognize sequential dependencies in meteorological
data makes it particularly suitable for predicting weather fluctuations over short and medium-term
periods. The CNN model, leveraging image-based pattern recognition, successfully detects cloud
formations and precipitation risks, improving situational awareness for UAV operators. However,
the higher computational cost of deep learning models may limit real-time applications on low-
power UAV hardware, requiring further optimization.

As real-world UAV flight tests have not yet been conducted, validation of the system has so
far been limited to simulated environments. In these simulations, the system's ability to adjust
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flight paths based on predicted weather changes was analyzed by monitoring potential deviations
from planned trajectories, response times to real-time updates, and the overall impact on
hypothetical flight success rates. Future work will focus on conducting real-world experimental
UAV tests under varying meteorological conditions to assess the system’s effectiveness in
dynamic flight scenarios.

Table 4 summarizes the key applications of UAVSs in logistics, agriculture, and surveillance,
highlighting their benefits and challenges. As these industries continue to evolve, the integration
of UAVs with advanced weather data systems, as indicated in the studies by Alam et al. and
Thibbotuwawa et al., will further optimize their operations, ensuring reliability even in
unpredictable weather conditions.

Table 4 — Key UAV Applications Across Industries

Industry UAV Application Benefits Challenges
Logistics Last-mile delivery, parcel | Faster delivery | Weather conditions,
transport times, reduced costs | airspace regulations
Agriculture Crop monitoring, precision | Efficient resource | Varying terrain,
spraying use, data-driven | dependency on real-time
decisions data
Surveillance | Security, border monitoring, | Enhanced  safety, | Privacy concerns, data
wildlife observation real-time security, weather impact
information

Although real-world trials are yet to be performed, preliminary simulation results suggest
that the system could significantly enhance flight reliability and energy efficiency by minimizing
unnecessary flight deviations caused by unexpected weather changes. By proactively adjusting
UAV flight paths based on real-time meteorological predictions, the system could potentially
optimize energy consumption, extend battery life, and reduce the risk of mid-mission power
failures. These improvements would be particularly beneficial for long-duration UAV missions,
where power management and real-time adaptability to environmental conditions are critical
factors in mission success.

For UAV missions conducted in remote or high-risk areas, the ability to dynamically respond
to changing weather conditions is essential. Traditional flight planning methods rely on static
meteorological forecasts, which may not accurately capture localized atmospheric variations. This
often leads to inefficient routes, unplanned diversions, or even mission failures due to unforeseen
weather conditions. In contrast, the proposed system integrates real-time data streams from 1oT-
based weather sensors, high-resolution satellite imagery, and machine learning models, allowing
UAVs to make autonomous adjustments based on continuously updated meteorological
conditions. This level of adaptability would be especially valuable in challenging environments
such as mountainous regions, maritime operations, and urban areas where microclimates can
significantly impact UAV performance.

By leveraging big data analytics, loT-based meteorological sensors, and Al-driven
forecasting models, the system aims to bridge the gap between static weather forecasting and real-
time UAV adaptability. The big data component enables the aggregation and analysis of vast
meteorological datasets from multiple sources, improving the ability to detect trends and identify
anomalies. The loT-based meteorological sensors provide real-time updates on wind speed, air
pressure, humidity, and temperature, ensuring UAVs operate with up-to-date environmental data.
Meanwhile, Al-driven forecasting models enhance predictive capabilities by identifying patterns
in historical and real-time data, enabling preemptive route adjustments before weather
disturbances occur.

The proposed approach has not yet been tested in real-world UAV operations, and its full
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effectiveness in live flight scenarios remains to be validated. Future research will focus on
integrating the developed predictive system with actual UAV flight missions, conducting
experimental test flights, and analyzing real-time operational performance under varying
meteorological conditions. These real-world experiments will provide critical insights into system
limitations, helping refine the predictive models, improve real-time processing efficiency, and
optimize Al models for deployment on embedded UAV hardware.

As Al-driven weather forecasting continues to evolve, its application in UAV mission
planning presents a promising pathway for improving flight safety, efficiency, and operational
adaptability. While the current study has demonstrated the feasibility of the approach in a
simulated setting, further empirical validation through experimental UAV deployments will be
essential to confirm its practical benefits and potential real-world impact.

Conclusion.

This study presents a data-driven approach for enhancing UAV flight planning through the
integration of big data analytics, real-time meteorological data, and machine learning-based
weather forecasting. The proposed system aims to optimize UAV operations by minimizing the
risks associated with adverse weather conditions, thereby improving flight safety, reliability, and
efficiency.

At this stage, the research has focused on developing the computational framework,
including data collection, preprocessing, feature engineering, and predictive modeling. Various
machine learning algorithms, such as LSTM, CNN, and Random Forest, have been implemented
and evaluated using historical and real-time meteorological datasets. The results of the simulations
demonstrate that deep learning models, particularly LSTM, outperform traditional methods in
short-term weather prediction, offering higher accuracy in forecasting temperature fluctuations
and wind speed variations. However, these findings are currently limited to simulation-based
evaluations, as no real-world flight tests have been conducted yet.

Despite the promising results obtained from data-driven simulations, the absence of real-
world UAYV testing represents a key limitation of this study. The effectiveness of the system in
dynamic environmental conditions, as well as its ability to adapt to real-time flight constraints,
remains to be validated through experimental deployments. Future work will focus on integrating
the predictive system into UAV flight operations, conducting real-world test flights, and assessing
the model’s performance in diverse meteorological environments. Additionally, efforts will be
made to optimize the system for real-time processing, ensuring that Al models can operate
efficiently on embedded UAV hardware with limited computational resources.

The findings of this study suggest that Al-driven weather forecasting can play a critical role
in UAV mission planning, providing operators with reliable meteorological insights that support
proactive decision-making and route optimization. With further development and real-world
validation, this approach has the potential to enhance UAV safety and operational efficiency,
particularly for missions conducted in high-risk or remote environments where weather conditions
can be unpredictable.
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paiivl Jcazoatiiapvina mikenei mayendi. Memeoponoausnvix gpaxmopnapoviy 6ondicandoayst ¥¥A
yuty Kayincizoiei men muimoinicine aumapavikmai Kayin meuoipeoi.

Byn 3epmmey yaxen oepexmep meH MAWUHANBIK OKbIMY MEXHOLOLUSNAPLIHA He2i30en2eH
¥¥A ywyvin oicocnapaay yulin ummeniekmyaniovl aya pauvlH O0dCAy JHCYUeCiH YCbIHAObL.
JKymvicma memeoponozusnvlk depekmepoi o40eyOiy 3amanayu 20icmepi Kapacmulpuliaobvl, OHbIH
iwinoe cnymuuxmix cypemmep, 10T cencoprapwvl sicone mapuxu ncazoanap naudaiausvliaobl.
Hezizei aya paiivl napamempnepin 6oaxcay ywin Long Short-Term Memory (LSTM) orcone
Convolutional Neural Networks (CNN) cusxmer meper oxvimy anecopummoepi Koioanwviiaowi.

Hamvizan ocyiie b6oaxcamuviy 92%-ea Oetiinei 0andicin Kammamacwviz emeodi, OY1 YuLy
acocnapray yakuimuin 30%-2a  KbicKapmyea oicoHe JHCannvl ONepayusiiblK  Kayincizoikmi
apmmulpyea MyMKiHOIK Oepedi. Mawunanvix oxeimyowviy ¥¥A aya pativin Oondicay gicyliecine
uHmezpayuscyl OeuimMoeniumikmi Kammamacsls emeoi dHCoHe KIUMAMMbIK HCAROAUNLAPObIH
o32epyine xcedell dxcayan bepyze MyMKIHOIK bepedi. Anvinzan Hamuicenep asuayusaoa Heacamobvl
UHMeNIeKm NeH YiKeH O0epeKmep AHANUMUKACLIH NAlOAIaH)OblH MAHbI30bLILIEbIH KOPCEemeoi.
Conoaii-ax, oyn scymvic Oonawiax zepmmey 0AbIMMAPbIH YCbIHAObL, COHbIY [UIHOe AYaAHblY
canacvl MeH KyH paouayuscbl CUSIKMbl KOCIMUUA IKOIOSUSILIK Gakmopiapovl Kapacmuipy,
COHOQU-AK, ABMOHOMObL YUY 6ACKAPY HCyliesiepiMeH bIKIMUMAL UHMeSPayusiay.

Tyiiin ce3dep: ynxken Oepekmep, MAWUHANLIK OKblmMYy, aya pauvin Oomxcay, ¥Y¥A, yuy
Jrcocnapaay, yuty Kayincizoiei, O0aicamobl Mooenivoe).

AHAJIN3 U TPOTHO3UPOBAHME IMOTI'OTHBIX YCJIOBUM IS
INVIAHUPOBAHMUSA TOJIETOB BECITMJIOTHBIX JIETATEJIBHBIX AIIITAPATOB C
N CITIOJIb3OBAHUEM BOJIBIINX JAHHBIX

Annomauusn. B cospemennvix ycrosusix becnuiommvle remamenvHole annapamul (BI1J/IA)
HAXo0sm WupoKoe HnpuUMeHeHue 6 MaxKux cgepax, Kak J0SUCMUKA, CelbCKoe XO03AUCmE0,
MOHUMOPUHE OKpYdHCaroufeli cpeovl U dIKCmpeHHble Ciyxcovl. OOHako ux paboma cyuecmeenHo
3a8ucum om MNO20OHbIX YCI08UL, 6KIIOUAs CKOPOCMb Gempd, MmemMnepamypy, O0CAoKu u
ammocgheproe Oasnenue. Henpedckaszyemocms Memeoponocudeckux Gakmopog co3oaem
3HauumenbHwvle pUCcKU 071 6e30nacHocmu u d¢hghekmusHocmu noaemos.

B Oannou pabome npednacaemcs UHMELNIEKMYANbHASL CUCMEMA NPOSHO3UPOBAHUS
N020OHbIX YC08Ull 05 naanuposanus noremos BIIJIA, ocnosannas na mexHonocusx OONbLUUX
OQHHBIX U MAWUHHO20 0OVYeHUs. B pamkax uccrnedosanus paccmampusaromcs co8pemMeHHble
Memoovl 0OpAbOMKU MemeopOOUYeCcKUX OAHHbIX, BKIIOUAS UCNONb308AHUE CNYMHUKOBbIX
cHumko8, loT-0amuuxos u ucmopuueckux 3anucei. Jis npocHO3UPOBAHUS KIHOUEBbIX NO2OOHBIX
napamempos NPUMeHsIomcs aieopummsl 2nyooko2o obyuenus, maxue kaxk Long Short-Term
Memory (LSTM) u Convolutional Neural Networks (CNN).

Paspabomannas cucmema noszeonsem odocmuzcams MOYHOCMU NPOCHO308 00 92%, umo
cnocobcmeyem COKpawjeHuro epemenu niaHuposanusi noiemos Ha 30% u noswviuenuro ooujel
bezonacnocmu onepayui. HMumeepayus mexHon02UU MAWUHHO2O OOYYeHUsI 6 CUCTNeMY
npocHo3Uuposanus no2oovl 0as BIIJIA obecneuusaem adanmueHoCmb U BO3MONCHOCHIL
ONEepaAmuUBHO20 peasupo8aHus Ha UsMeHeHUs Kiumamudeckux yciosuil. [lonyuennvie pesyivmamol
NOOYEPKUBAIOM BANHCHOCb NPUMEHEHUSI MEXHON02ULL UCKYCCMEEHHO20 UHMENNeKMA U AHAIUMUKU
bonvuux Oaunnvix 6 asuayuu. Paboma makoice npeonazaem HanpasieHus ONsl OANbHEUWUX
UCCe006aHUl, 6KAIOYAs Yuem OONOTHUMENbHBIX (haKmopos oKpyxicaroujeli cpedsl, maKux Kax
Kayecmeo 6030yXa U COTHEYHAs. paouayus, a Mmakice 03MONCHYIO UHMESPAYUI0 ¢ A8MOHOMHbIMU
cucmemamu ynpagieHus nojemamu.

Knrwouesvte cnosa: 6onvuiue OanHvle, MAWUHHOE 0OYUeHUe, NPOSHO3UPOBAHUE NO200b,
BIIJIA, nnanuposanue nonemos, 6€30nacHocms noiemos, npeOuKmueHoe MooeauposaHue.
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